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cable in terms of solvation of the cationic electrophile as well 
as the carboxylate by the protic reaction component. 

Additional studies of our system and related systems will 
be necessary before the mechanisms of acyl transfer to car­
boxylate ions in dipolar aprotic solvent becomes fully under­
stood. Obviously, problems such as determination of the 
rate-limiting step in the reaction as well as the catalytic im­
portance of leaving-group stabilization (i.e., by neighboring-
group participation) will have to be addressed. Nevertheless, 
the present studies clearly demonstrate that, under appropriate 
conditions, carboxylate ions can effectively function as 
nucleophilic catalysts in hydrolytic reactions. 
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Total Synthesis of Streptonigrin 

Sir: 

Streptonigrin (1), a metabolite of a few species oiStrepto-
myces and Actinomyces, 1^2 has been found quite effective in 
treatment of a variety of human tumors, although its high 
toxicity has precluded general clinical use.3 Considerable work 
on elucidation of the biosynthesis4 and the mechanism of ac-

CH3O 

I R»H 2. R - C H 3 

tion5 of streptonigrin has recently been described. Many re­
ports have also appeared6'7 concerning synthesis of analogues 
of 1 and on model studies directed toward the synthesis of 
streptonigrin itself. We now describe the first total synthesis 
of this unique heterocyclic natural product. 

2-Benzyloxy-3,4-dimethoxybenzaldehyde8 was converted 
into epoxide 3 [(CHj)3SI, Me2SO, NaH, -10 0C; 99%]9 

which without purification was added to vinylmagnesium 
bromide (THF, 0 0C, 1 h) to give alcohol 4 in 97% yield. Ox­
idation of 4 with Cr03-pyridine in methylene chloride, fol­
lowed by brief treatment of the crude reaction product with 
dilute HCl, gave the conjugated unsaturated aldehyde 5:79%; 
IR (film) 2720,1690,1640 cm"1; NMR (CDCl3) 5 1.8 (3 H, 
d, J = 7 Hz), 6.85 ( l H , d , J = 7 Hz), 9.5 (1 H, s). 

CH3O CH3O 

Treatment of aldehyde 5 with 1 equivalent of triphenyl-
phosphonium ethylide (THF, -78 0C), followed by addition 
of 1 equivalent each of n-butyllithium and f-BuOK in J-BuOH 
(Schlosser procedure10), afforded diene 6 (75%) as an insep­
arable mixture of trans and cis isomers (~2.5:1, respectively, 
as estimated by NMR). This diene mixture was heated with 
l-(/j-chlorophenyl)-4-methoxyhydantoin (7)" (xylene, reflux, 
72 h) to give an inseparable mixture of the desired Diels-Alder 
adduct 8 along with regioisomer 9, in a ratio of ~3:1, respec­
tively. We have never been able to get this cycloaddition re­
action to go to completion, and thus routinely recycled un-
reacted diene 6. The total yield of adducts 8 and 9 after one 
recycle was 56% and could be somewhat improved by further 
recycling.12 

,P-ClC 6 H 4 

$v_^0 

CH3O 
CH3O 

CH3O 
CH3O 

IO R= H 

The mixture of adducts 8 and 9 was hydrolyzed with 
Ba(OH)2 (dioxane-H20, reflux, 24 h) to give a mixture of 
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amino acid IO and the corresponding regioisomeric compound 
derived from 9. This mixture could be esterified (SOCb, 
CH3OH, reflux, 12 h) to afford 11 containing some of the 
isomeric methyl ester. The crude mixture of amino esters was 
aromatized (5% Pd/C, toluene, reflux, 15 h) to afford the 
desired pyridine 12 [20% from the initial mixture of adducts 
8 and 9; IR (CHCl3) 1725 cm"1; NMR (CDCl3) 5 2.2 (3 H, 
s), 2.5 (3 H, s), 3.88, 3.90, 3.93 (3 H each, s), 4.8 (2 H, s), 6.7 
(2 H,-s), 6.8-7.2 (6 H, m)] and only a trace of the isomeric 
pyridine derived from 9. It is not presently clear just why so 
little of the undesired pyridine is produced in the aromatization 
step. 

TV-Oxide 13 was prepared by treatment of pyridine 12 with 
m-chloroperbenzoic acid (CH2CI2, room temperature; 100%). 
Upon heating with acetic anhydride (120 ° C, 2 h) compound 
13 was converted into acetate 14 [93%; mp 89-90 0C; IR 
(CHCl3) 1735 cm"1; NMR (CDCl3) h 2.1 (3 H, s), 2.25 (3 H, 
s), 4.9 (2 H, s), 5.25 (2 H, s)], which upon stirring at room 
temperature with K2CO3 in anhydrous methanol produced 
alcohol 15 (mp 128-128.5 0C). This alcohol was next trans-

COOCH, 

CH3O 

CH3O CH3O 
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formed into the chloride 16 (SOCl2/benzene; mp 121-122 0C) 
which was alkylated with /V-cyanomethylpyrrolidine (Me2SO, 
43 0C) to form quaternary salt 17. Without isolation, 17 was 
treated first with /-BuOK in THF/Me2SO (2:1) at -12 0C 
(deoxygenated argon, 10 min) and then with oxalic acid in 
THF/H2O (2:1) at reflux to yield aldehyde 18:7b'13 35% from 
acetate 14; NMR (CDCl3) 5 2.1, 2.75 (3 H each, s), 5.05 (2 
H, s), 9.5 (IH, s). 

Oxidation of 18 with pertrifluoroacetic acid (CH2CI2, 
Na2HPO4, room temperature) led to /V-oxide 19(100%) which 
was further oxidized with KMnO4 in acetone-H20 (2:1) at 
room temperature giving carboxylic acid 20 (100%). Appli­
cation of the Yamada modification14 of the Curtius rear­
rangement to acid 20 [(PhO)2PON3, NEt3, CeH6, reflux, 1 
h, followed by H2O, reflux, 0.5 h] afforded amine 21 in 74% 
yield. This compound was heated in acetic anhydride (120-125 
0C, 2 h) and the crude product was hydrolyzed (K2C03, dry 
CH3OH, room temperature, 1.5 h) to yield alcohol 22 (68%). 
Oxidation of 22 with activated Mn02 in chloroform at room 
temperature led to amino aldehyde 23: 100%; IR (CHCl3) 
3500, 3350, 1720, 1675 cm"1; NMR (CDCl3) 5 2.2 (3 H, s), 
4.95 (2 H, s), 10.2(1 H, s). 

COOCH3 

16 R - C H O , R = C H , 

2 2 R = N H 2 , R = CH,OH 

19 R.CHO 

2 0 R-COOH 

2 J R -NH 2 ,R=CHO 2J! R - K H 2 

Hydroxyphosphonate 24 was formed by treatment of al­
dehyde 23 with LiCH2PO(OCH3)2 in THF/HMPA (-78 0C; 
46%) and oxidation of 24 with activated MnO2 (CHCl3, room 
temperature) provided ketophosphonate 25 (95%). This ke-

tophosphonate was condensed with the known15'16 nitroal-
dehyde 26 (KH, C6H6, room temperature, 2 h) to give nitro-
chalcone 27 (65%). Reductive cyclization of 27 with sodium 
hydrosulfite (CH3OH-H2O, reflux, 2 h)'5 led to the tetracyclic 
compound 28 in 90% yield and removal of the sulfonate pro­
tecting group was achieved with NaOCH3 in dry methanol (40 
0C, 40 min; 90%) yielding the A-ring phenol 29. 

0 x 
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Fremy's salt17 oxidation of phenol 29 (CH3OH-H2O, room 
temperature, 10 min) cleanly produced quinolinequinone 30: 
90%; NMR (CDCl3) 5 2.2 (3 H, s), 4.9 (2 H, AB quartet, J = 
11 Hz), 6.3 (1 H, s), 6.8 (2 H, AB quartet, J = 8.5 Hz), 8.5 (1 
H, d, J = 8.6 Hz), 9.0 (1 H, d, J = 8.6 Hz). This compound 
was transformed into the aminoquinone 31 (30%) by sequential 
treatment with (1) iodine azide/CH3CN;7c (2) NaN3/ DMF, 
room temperature, 15 min; and (3) sodium hydrosulfite/ 
CH3OH-H2O, reflux, 1 h15 [NMR (CDCl3) <5 2.2 (3 H, s), 
4.9 (2 H, AB quartet, 7 = 1 1 Hz), 6.8 (2 H, AB quartet, J = 
8.5 Hz)]. Our synthetic material was identical (IR,' H NMR, 
TLC, mass spectrum) with an authentic sample of compound 
31 prepared from streptonigrin.18 

Debenzylation of 31 was effected with anhydrous AlCl3 
(CHCl3, room temperature, 1 h; 80%) to give streptonigrin 
methyl ester (2) which was identical with an authentic sam­
ple.18 Hydrolysis of the ester group of 2 with 28% aqueous 
NH4OH (room temperature, 4 days; 40%) afforded synthetic 
streptonigrin (1) indistinguishable from the natural 
product. 

CH3O 

JO X - H 

31 X=NH 2 
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Total Synthesis of Pseudoguaianolides: 
(±)-Aromaticin and (±)-Aromatin 

Sir: 

We report herein the first total synthesis of aromaticin (1) 
and aromatin (2), isolated from the Chilean plant Helenium 

t-8u0 
0 t-BuO VCO2CH3 t-BuO 

aromaticum (Hook) Bailey,' which are members of the 
helenanolide group2 of pseudoguaianolides3 characterized by 
an a-oriented methyl group at C-IO.3 To prepare for this un-

t-Bu0 

a (a) LDA, (CH3)3SiCH2C02CH3J THF, -78 - 25 "C; (b) LDA-
HMPA, THF, -78 °C, then CH3CO2H; (c) 3H3-THF, -78 - 25 0C, 
H2O2, OH"; (d) Pt, O2, H20-acetone; (e) LDA-HMPA, BrCH3-
OCH3, -78 - -5 °C; (0 3 equiv of KO-f-Bu, 1 equiv of H3O, THF; 
(g) TFA, 0 0C, 3 h, then NaOH/j-PrOH-H30, 25 0C, 2 h; (h) PCC, 
CH2Cl2; (i) C6H5SeCl, EtAc, HCl, then NaIO4, THF-H2O, 25 0C, 7 h. 

dertaking, we had previously developed an expeditious route 
to properly functionalized bicyclo[5.3.0]decenone precursors,4 

in which the proper relative configurations at carbons 1, 5, and 
10 were subsequently established.5 These efforts afforded the 
key intermediate 3, whose transformation into (i)-aromaticin 
(and subsequently (±)-aromatin) is outlined in Scheme I. 

Our regio- and stereoselective lactone annelation com­
menced with carbanion attack at C-7 in 3 (methyl trimeth-
ylsilylacetate and LDA; quantitative yield). Once the acrylate 
side chain had been introduced, deconjugation toward C-8 was 
cleanly achieved by protonolysis of the kinetic dienolate re­
sulting from LDA-induced proton abstraction at the less hin­
dered 7 position (-»• 4). The stage was then set for the crucial 
hydroboration of 4,6 wherein two additional chiral centers can 
be correctly introduced if regiospecific attack by a borane 
occurs from the a face of the molecule, via a chair rather than 
twist-boat conformation. Complete hydroboration of the 
hindered double bond in 4, at the low temperatures chosen to 
ensure maximum stereoselectivity, could only be achieved with 
borane itself; this, in turn, left no choice but to allow un­
avoidable ester reduction7 to occur as well, affording diol 5, 
as a 4:1 stereoisomeric mixture, in 95% yield after oxidative 
workup. Purified 5,6 mp 114-115 0C, was selectively oxidized 
(Pt/02) to yield the required8 lactone 6,6 mp 88.5-89 0C, in 
45% overall yield (four steps) from 3: IR (neat) 1780, 1200 
cm"1; 'H NMR (CDCl3) 54.2 (C-8 H,brm), 3.4 (C-4 H,br 
m). 

a-Methylenation of 6 was achieved in two steps (Scheme 
I), surely one of the more direct approaches for solving this 
ubiquitous problem in natural products synthesis.10 After al­
ky lation" of 6 with methoxymethyl bromide, "unsolvated" 
potassium ferf-butoxide-potassium hydroxide in THF'2 was 
used to effect methanol elimination and saponification, so as 
to generate the acrylate anion which is presumably more 
protected from nucleophilic destruction than the corresponding 
acid or lactone. Quenching the basic solution in dilute acid 
afforded crude 76b [IR (neat) 1765, 1665 cm"1; 'H NMR 
(CDCl3) b6.00(1 H,d,y = 3 Hz), 5.26(1 H,d, J = 3 Hz)], 
which was directly subjected to deblocking and oxidation of 
the C-4 alcohol, according to Marshall.13 This afforded 2,3-
dihydroaromaticin(2,3-dihydro-l), mp 123-l24°C,in~20% 
overall yield from 6 (five steps). (+)-2,3-Dihydroaromaticin 
has recently been isolated from Telekia speciosau and we were 
pleased to find the 100-MHz 'H NMR spectrum and the mass 
spectrum (70 eV) of our synthetic material to be in excellent 
agreement with the detailed spectral data provided.'4 Insertion 
of the 2,3 double bond via selenylation and selenoxide elimi-
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